Moment Of Inertia Formulas Pdf

Table of Selected Moments of Inertia Note: All formulas shown assume objects of uniform mass density. Point mass at a radius R Thin rod about axis through center perpendicular to length Thin rod about axis through end perpendicular to length Thin-walled cylinder about. Moment of inertia formula of parallel axes theorem is –moment of inertia of a body about a given axis I is equal to the sum of moment of inertia of the body about a parallel axis passing through its centre of mass (COM) I CM and the product of mass (M) of body and square of normal distance d between the two axes.

Table of Selected Moments of Inertia. Note: All formulas shown assume objects of uniform mass density. Point mass at a radius R. Thin rod about axis through center perpendicular to length. Thin rod about axis through end perpendicular to length. Thin-walled cylinder about central axis.

Moment of inertia
Flywheels have large moments of inertia to smooth out mechanical motion. This example is in a Russian museum.
I
SI unitkg m2
Other units
lbf·ft·s2
Extensive?yes
I=Lω{displaystyle I={frac {L}{omega }}}
DimensionML2
Part of a series of articles about
Classical mechanics
F=ma{displaystyle {vec {F}}=m{vec {a}}}
  • Energy
  • Inertia / Moment of inertia

  • Mechanical power

  • Moment
  • Analytical mechanics
  • Damping (ratio)
  • Inertial / Non-inertial reference frame
  • Motion (linear)
  • Rigid body
  • Centrifugal force
  • Angular acceleration / displacement / frequency / velocity
Tightrope walkers use the moment of inertia of a long rod for balance as they walk the rope. Samuel Dixon crossing the Niagara River in 1890.

The moment of inertia, otherwise known as the angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rotation rate. It is an extensive (additive) property: for a point mass the moment of inertia is just the mass times the square of the perpendicular distance to the rotation axis. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constrained to rotate in a plane, only their moment of inertia about an axis perpendicular to the plane, a scalar value, matters. For bodies free to rotate in three dimensions, their moments can be described by a symmetric 3 × 3 matrix, with a set of mutually perpendicular principal axes for which this matrix is diagonal and torques around the axes act independently of each other.

  • 3Examples
    • 3.2Compound pendulum
  • 5Motion in a fixed plane
    • 5.1Point mass
    • 5.2Rigid body
  • 6Motion in space of a rigid body, and the inertia matrix
  • 7Inertia tensor
  • 8Inertia matrix in different reference frames

Introduction[edit]

When a body is free to rotate around an axis, torque must be applied to change its angular momentum. The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moment of inertia may be expressed in units of kilogram meter squared (kg·m2) in SI units and pound-foot-second squared (lbf·ft·s2) in imperial or US units.

Moment of inertia plays the role in rotational kinetics that mass (inertia) plays in linear kinetics - both characterize the resistance of a body to changes in its motion. The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by mr2{displaystyle mr^{2}}, where r{displaystyle r} is the distance of the point from the axis, and m{displaystyle m} is the mass. For an extended rigid body, the moment of inertia is just the sum of all the small pieces of mass multiplied by the square of their distances from the axis in question. For an extended body of a regular shape and uniform density, this summation sometimes produces a simple expression that depends on the dimensions, shape and total mass of the object.

In 1673 Christiaan Huygens introduced this parameter in his study of the oscillation of a body hanging from a pivot, known as a compound pendulum.[1] The term moment of inertia was introduced by Leonhard Euler in his book Theoria motus corporum solidorum seu rigidorum in 1765,[1][2] and it is incorporated into Euler's second law.

The natural frequency of oscillation of a compound pendulum is obtained from the ratio of the torque imposed by gravity on the mass of the pendulum to the resistance to acceleration defined by the moment of inertia. Comparison of this natural frequency to that of a simple pendulum consisting of a single point of mass provides a mathematical formulation for moment of inertia of an extended body.[3][4]

Moment of inertia also appears in momentum, kinetic energy, and in Newton's laws of motion for a rigid body as a physical parameter that combines its shape and mass. There is an interesting difference in the way moment of inertia appears in planar and spatial movement. Planar movement has a single scalar that defines the moment of inertia, while for spatial movement the same calculations yield a 3 × 3 matrix of moments of inertia, called the inertia matrix or inertia tensor.[5][6]

The moment of inertia of a rotating flywheel is used in a machine to resist variations in applied torque to smooth its rotational output. The moment of inertia of an airplane about its longitudinal, horizontal and vertical axis determines how steering forces on the control surfaces of its wings, elevators and tail affect the plane in roll, pitch and yaw.

Definition[edit]

Spinning figure skaters can reduce their moment of inertia by pulling in their arms, allowing them to spin faster due to conservation of angular momentum.
Video of rotating chair experiment, illustrating moment of inertia. When the spinning professor pulls his arms, his moment of inertia decreases; to conserve angular momentum, his angular velocity increases.

Moment of inertia I{displaystyle I} is defined as the ratio of the net angular momentumL{displaystyle L} of a system to its angular velocityω{displaystyle omega } around a principal axis,[7][8] that is

I=Lω.{displaystyle I={frac {L}{omega }}.}

If the angular momentum of a system is constant, then as the moment of inertia gets smaller, the angular velocity must increase. This occurs when spinning figure skaters pull in their outstretched arms or divers curl their bodies into a tuck position during a dive, to spin faster.[7][8][9][10][11][12][13]

If the shape of the body does not change, then its moment of inertia appears in Newton's law of motion as the ratio of an applied torqueτ{displaystyle tau } on a body to the angular accelerationα{displaystyle alpha } around a principal axis, that is

τ=Iα.{displaystyle tau =Ialpha .}

For a simple pendulum, this definition yields a formula for the moment of inertia I{displaystyle I} in terms of the mass m{displaystyle m} of the pendulum and its distance r{displaystyle r} from the pivot point as,

I=mr2.{displaystyle I=mr^{2}.}

Thus, moment of inertia depends on both the mass m{displaystyle m} of a body and its geometry, or shape, as defined by the distance r{displaystyle r} to the axis of rotation.

This simple formula generalizes to define moment of inertia for an arbitrarily shaped body as the sum of all the elemental point masses dm{displaystyle mathrm {d} m} each multiplied by the square of its perpendicular distance r{displaystyle r} to an axis k{displaystyle k}.

In general, given an object of mass m{displaystyle m}, an effective radius k{displaystyle k} can be defined for an axis through its center of mass, with such a value that its moment of inertia is

I=mk2,{displaystyle I=mk^{2},}

where k{displaystyle k} is known as the radius of gyration.

Examples[edit]

Simple pendulum[edit]

Moment of inertia can be measured using a simple pendulum, because it is the resistance to the rotation caused by gravity. Mathematically, the moment of inertia of the pendulum is the ratio of the torque due to gravity about the pivot of a pendulum to its angular acceleration about that pivot point. For a simple pendulum this is found to be the product of the mass of the particle m{displaystyle m} with the square of its distance r{displaystyle r} to the pivot, that is

I=mr2.{displaystyle I=mr^{2}.}

This can be shown as follows: The force of gravity on the mass of a simple pendulum generates a torque τ=r×F{displaystyle {boldsymbol {tau }}=mathbf {r} times mathbf {F} } around the axis perpendicular to the plane of the pendulum movement. Here r{displaystyle mathbf {r} } is the distance vector perpendicular to and from the force to the torque axis, and F{displaystyle mathbf {F} } is the net force on the mass. Associated with this torque is an angular acceleration, α{displaystyle {boldsymbol {alpha }}}, of the string and mass around this axis. Since the mass is constrained to a circle the tangential acceleration of the mass is a=α×r{displaystyle mathbf {a} ={boldsymbol {alpha }}times mathbf {r} }. Since F=ma{displaystyle F=ma} the torque equation becomes:

τ=r×F=r×(mα×r)=m((rr)α(rα)r)=mr2α=Iαk^,{displaystyle {begin{aligned}{boldsymbol {tau }}&=mathbf {r} times mathbf {F} =mathbf {r} times (m{boldsymbol {alpha }}times mathbf {r} )&=m((mathbf {r} cdot mathbf {r} ){boldsymbol {alpha }}-(mathbf {r} cdot {boldsymbol {alpha }})mathbf {r} )&=mr^{2}{boldsymbol {alpha }}=Ialpha mathbf {hat {k}} ,end{aligned}}}

where k^{displaystyle mathbf {hat {k}} } is a unit vector perpendicular to the plane of the pendulum. (The second to last step uses the vector triple product expansion with the perpendicularity of α{displaystyle {boldsymbol {alpha }}} and r{displaystyle mathbf {r} }.) The quantity I=mr2{displaystyle I=mr^{2}} is the moment of inertia of this single mass around the pivot point.

The quantity I=mr2{displaystyle I=mr^{2}} also appears in the angular momentum of a simple pendulum, which is calculated from the velocity v=ω×r{displaystyle mathbf {v} ={boldsymbol {omega }}times mathbf {r} } of the pendulum mass around the pivot, where ω{displaystyle {boldsymbol {omega }}} is the angular velocity of the mass about the pivot point. This angular momentum is given by

L=r×p=r×(mω×r)=m((rr)ω(rω)r)=mr2ω=Iωk^,{displaystyle {begin{aligned}mathbf {L} &=mathbf {r} times mathbf {p} =mathbf {r} times (m{boldsymbol {omega }}times mathbf {r} )&=m((mathbf {r} cdot mathbf {r} ){boldsymbol {omega }}-(mathbf {r} cdot {boldsymbol {omega }})mathbf {r} )&=mr^{2}{boldsymbol {omega }}=Iomega mathbf {hat {k}} ,end{aligned}}}

using a similar derivation to the previous equation.

Similarly, the kinetic energy of the pendulum mass is defined by the velocity of the pendulum around the pivot to yield

EK=12mvv=12(mr2)ω2=12Iω2.{displaystyle E_{text{K}}={frac {1}{2}}mmathbf {v} cdot mathbf {v} ={frac {1}{2}}left(mr^{2}right)omega ^{2}={frac {1}{2}}Iomega ^{2}.}

This shows that the quantity I=mr2{displaystyle I=mr^{2}} is how mass combines with the shape of a body to define rotational inertia. The moment of inertia of an arbitrarily shaped body is the sum of the values mr2{displaystyle mr^{2}} for all of the elements of mass in the body.

Compound pendulum[edit]

Pendulums used in Mendenhall gravimeter apparatus, from 1897 scientific journal. The portable gravimeter developed in 1890 by Thomas C. Mendenhall provided the most accurate relative measurements of the local gravitational field of the Earth.

A compound pendulum is a body formed from an assembly of particles of continuous shape that rotates rigidly around a pivot. Its moment of inertia is the sum of the moments of inertia of each of the particles that it is composed of.[14][15]:395–396[16]:51–53 The naturalfrequency (ωn{displaystyle omega _{text{n}}}) of a compound pendulum depends on its moment of inertia, IP{displaystyle I_{P}},

ωn=mgrIP,{displaystyle omega _{text{n}}={sqrt {frac {mgr}{I_{P}}}},}

where m{displaystyle m} is the mass of the object, g{displaystyle g} is local acceleration of gravity, and r{displaystyle r} is the distance from the pivot point to the center of mass of the object. Measuring this frequency of oscillation over small angular displacements provides an effective way of measuring moment of inertia of a body.[17]:516–517

Thus, to determine the moment of inertia of the body, simply suspend it from a convenient pivot point P{displaystyle P} so that it swings freely in a plane perpendicular to the direction of the desired moment of inertia, then measure its natural frequency or period of oscillation (t{displaystyle t}), to obtain

IP=mgrωn2=mgrt24π2,{displaystyle I_{P}={frac {mgr}{omega _{text{n}}^{2}}}={frac {mgrt^{2}}{4pi ^{2}}},}

where t{displaystyle t} is the period (duration) of oscillation (usually averaged over multiple periods).

The moment of inertia of the body about its center of mass, IC{displaystyle I_{C}}, is then calculated using the parallel axis theorem to be

IC=IPmr2,{displaystyle I_{C}=I_{P}-mr^{2},}

where m{displaystyle m} is the mass of the body and r{displaystyle r} is the distance from the pivot point P{displaystyle P} to the center of mass C{displaystyle C}.

Moment of inertia of a body is often defined in terms of its radius of gyration, which is the radius of a ring of equal mass around the center of mass of a body that has the same moment of inertia. The radius of gyration k{displaystyle k} is calculated from the body's moment of inertia IC{displaystyle I_{C}} and mass m{displaystyle m} as the length[18]:1296–1297

k=ICm.{displaystyle k={sqrt {frac {I_{C}}{m}}}.}

Center of oscillation[edit]

A simple pendulum that has the same natural frequency as a compound pendulum defines the length L{displaystyle L} from the pivot to a point called the center of oscillation of the compound pendulum. This point also corresponds to the center of percussion. The length L{displaystyle L} is determined from the formula,

ωn=gL=mgrIP,{displaystyle omega _{text{n}}={sqrt {frac {g}{L}}}={sqrt {frac {mgr}{I_{P}}}},}

or

L=gωn2=IPmr.{displaystyle L={frac {g}{omega _{text{n}}^{2}}}={frac {I_{P}}{mr}}.}

The seconds pendulum, which provides the 'tick' and 'tock' of a grandfather clock, takes one second to swing from side-to-side. This is a period of two seconds, or a natural frequency of πrad/s{displaystyle pi mathrm {rad/s} } for the pendulum. In this case, the distance to the center of oscillation, L{displaystyle L}, can be computed to be

L=gωn29.81m/s2(3.14rad/s)20.99m.{displaystyle L={frac {g}{omega _{text{n}}^{2}}}approx {frac {9.81 mathrm {m/s^{2}} }{(3.14 mathrm {rad/s} )^{2}}}approx 0.99 mathrm {m} .}

Notice that the distance to the center of oscillation of the seconds pendulum must be adjusted to accommodate different values for the local acceleration of gravity. Kater's pendulum is a compound pendulum that uses this property to measure the local acceleration of gravity, and is called a gravimeter.

Measuring moment of inertia[edit]

The moment of inertia of a complex system such as a vehicle or airplane around its vertical axis can be measured by suspending the system from three points to form a trifilar pendulum. A trifilar pendulum is a platform supported by three wires designed to oscillate in torsion around its vertical centroidal axis.[19] The period of oscillation of the trifilar pendulum yields the moment of inertia of the system.[20]

Motion in a fixed plane[edit]

Point mass[edit]

Four objects with identical masses and radii racing down a plane while rolling without slipping. From back to front:
  • spherical shell,
  • solid sphere,
  • cylindrical ring, and
  • solid cylinder.
The time for each object to reach the finishing line depends on their moment of inertia. (OGV version)

The moment of inertia about an axis of a body is calculated by summing mr2{displaystyle mr^{2}} for every particle in the body, where r{displaystyle r} is the perpendicular distance to the specified axis. To see how moment of inertia arises in the study of the movement of an extended body, it is convenient to consider a rigid assembly of point masses. (This equation can be used for axes that are not principal axes provided that it is understood that this does not fully describe the moment of inertia.[21])

Consider the kinetic energy of an assembly of N{displaystyle N} masses mi{displaystyle m_{i}} that lie at the distances ri{displaystyle r_{i}} from the pivot point P{displaystyle P}, which is the nearest point on the axis of rotation. It is the sum of the kinetic energy of the individual masses,[17]:516–517[18]:1084–1085[18]:1296–1300

EK=i=1N12mivivi=i=1N12mi(ωri)2=12ω2i=1Nmiri2.{displaystyle E_{text{K}}=sum _{i=1}^{N}{frac {1}{2}},m_{i}mathbf {v} _{i}cdot mathbf {v} _{i}=sum _{i=1}^{N}{frac {1}{2}},m_{i}left(omega r_{i}right)^{2}={frac {1}{2}},omega ^{2}sum _{i=1}^{N}m_{i}r_{i}^{2}.}

This shows that the moment of inertia of the body is the sum of each of the mr2{displaystyle mr^{2}} terms, that is

IP=i=1Nmiri2.{displaystyle I_{P}=sum _{i=1}^{N}m_{i}r_{i}^{2}.}

Thus, moment of inertia is a physical property that combines the mass and distribution of the particles around the rotation axis. Notice that rotation about different axes of the same body yield different moments of inertia.

The moment of inertia of a continuous body rotating about a specified axis is calculated in the same way, except with infinitely many point particles. Thus the limits of summation are removed, and the sum is written as follows:

IP=imiri2{displaystyle I_{P}=sum _{i}m_{i}r_{i}^{2}}

Another expression replaces the summation with an integral,

Moment Of Inertia Formulas Pdf Free

IP=Qρ(x,y,z)r2dV{displaystyle I_{P}=iiint limits _{Q}rho left(x,y,zright)left|mathbf {r} right|^{2}mathrm {d} V}

Here, the function ρ{displaystyle rho } gives the mass density at each point (x,y,z){displaystyle (x,y,z)}, r{displaystyle mathbf {r} } is a vector perpendicular to the axis of rotation and extending from a point on the rotation axis to a point (x,y,z){displaystyle (x,y,z)} in the solid, and the integration is evaluated over the volume V{displaystyle V} of the body Q{displaystyle Q}. The moment of inertia of a flat surface is similar with the mass density being replaced by its areal mass density with the integral evaluated over its area.

Note on second moment of area: The moment of inertia of a body moving in a plane and the second moment of area of a beam's cross-section are often confused. The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the z{displaystyle z}-axis perpendicular to the cross-section, weighted by its density. This is also called the polar moment of the area, and is the sum of the second moments about the x{displaystyle x}- and y{displaystyle y}-axes.[22] The stresses in a beam are calculated using the second moment of the cross-sectional area around either the x{displaystyle x}-axis or y{displaystyle y}-axis depending on the load.

Examples[edit]

The moment of inertia of a compound pendulum constructed from a thin disc mounted at the end of a thin rod that oscillates around a pivot at the other end of the rod, begins with the calculation of the moment of inertia of the thin rod and thin disc about their respective centers of mass.[18]

  • The moment of inertia of a thin rod with constant cross-section s{displaystyle s} and density ρ{displaystyle rho } and with length {displaystyle ell } about a perpendicular axis through its center of mass is determined by integration.[18]:1301 Align the x{displaystyle x}-axis with the rod and locate the origin its center of mass at the center of the rod, then
    IC,rod=Qρx2dV=22ρx2sdx=ρsx33|22=ρs3(38+38)=m212,{displaystyle I_{C,{text{rod}}}=iiint limits _{Q}rho ,x^{2},mathrm {d} V=int _{-{frac {ell }{2}}}^{frac {ell }{2}}rho ,x^{2}s,mathrm {d} x=left.rho s{frac {x^{3}}{3}}right|_{-{frac {ell }{2}}}^{frac {ell }{2}}={frac {rho s}{3}}left({frac {ell ^{3}}{8}}+{frac {ell ^{3}}{8}}right)={frac {mell ^{2}}{12}},}
    where m=ρs{displaystyle m=rho sell } is the mass of the rod.
  • The moment of inertia of a thin disc of constant thickness s{displaystyle s}, radius R{displaystyle R}, and density ρ{displaystyle rho } about an axis through its center and perpendicular to its face (parallel to its axis of rotational symmetry) is determined by integration.[18]:1301[failed verification] Align the z{displaystyle z}-axis with the axis of the disc and define a volume element as dV=srdrdθ{displaystyle mathrm {d} V=srmathrm {d} rmathrm {d} theta }, then
    IC,disc=Qρr2dV=02π0Rρr2srdrdθ=2πρsR44=12mR2,{displaystyle I_{C,{text{disc}}}=iiint limits _{Q}rho ,r^{2},mathrm {d} V=int _{0}^{2pi }int _{0}^{R}rho r^{2}sr,mathrm {d} r,mathrm {d} theta =2pi rho s{frac {R^{4}}{4}}={frac {1}{2}}mR^{2},}
    where m=πR2ρs{displaystyle m=pi R^{2}rho s} is its mass.
  • The moment of inertia of the compound pendulum is now obtained by adding the moment of inertia of the rod and the disc around the pivot point P{displaystyle P} as,
    IP=IC,rod+Mrod(L2)2+IC,disc+Mdisc(L+R)2,{displaystyle I_{P}=I_{C,{text{rod}}}+M_{text{rod}}left({frac {L}{2}}right)^{2}+I_{C,{text{disc}}}+M_{text{disc}}(L+R)^{2},}
    where L{displaystyle L} is the length of the pendulum. Notice that the parallel axis theorem is used to shift the moment of inertia from the center of mass to the pivot point of the pendulum.

A list of moments of inertia formulas for standard body shapes provides a way to obtain the moment of inertia of a complex body as an assembly of simpler shaped bodies. The parallel axis theorem is used to shift the reference point of the individual bodies to the reference point of the assembly.

As one more example, consider the moment of inertia of a solid sphere of constant density about an axis through its center of mass. This is determined by summing the moments of inertia of the thin discs that form the sphere. If the surface of the ball is defined by the equation[18]:1301

x2+y2+z2=R2,{displaystyle x^{2}+y^{2}+z^{2}=R^{2},}

then the radius r{displaystyle r} of the disc at the cross-section z{displaystyle z} along the z{displaystyle z}-axis is

r(z)2=x2+y2=R2z2.{displaystyle r(z)^{2}=x^{2}+y^{2}=R^{2}-z^{2}.}

Therefore, the moment of inertia of the ball is the sum of the moments of inertia of the discs along the z{displaystyle z}-axis,

Pdf
IC,ball=RRπρ2r(z)4dz=RRπρ2(R2z2)2dz=πρ2(R4z23R2z3+15z5)|RR=πρ(123+15)R5=25mR2,{displaystyle {begin{aligned}I_{C,{text{ball}}}&=int _{-R}^{R}{frac {pi rho }{2}}r(z)^{4},mathrm {d} z=int _{-R}^{R}{frac {pi rho }{2}}left(R^{2}-z^{2}right)^{2},mathrm {d} z&=left.{frac {pi rho }{2}}left(R^{4}z-{frac {2}{3}}R^{2}z^{3}+{frac {1}{5}}z^{5}right)right|_{-R}^{R}&=pi rho left(1-{frac {2}{3}}+{frac {1}{5}}right)R^{5}&={frac {2}{5}}mR^{2},end{aligned}}}

where m=43πR3ρ{displaystyle m={frac {4}{3}}pi R^{3}rho } is the mass of the sphere.

Rigid body[edit]

If a mechanical system is constrained to move parallel to a fixed plane, then the rotation of a body in the system occurs around an axis k^{displaystyle mathbf {hat {k}} } perpendicular to this plane. In this case, the moment of inertia of the mass in this system is a scalar known as the polar moment of inertia. The definition of the polar moment of inertia can be obtained by considering momentum, kinetic energy and Newton's laws for the planar movement of a rigid system of particles.[14][17][23][24]

If a system of n{displaystyle n} particles, Pi,i=1,...,n{displaystyle P_{i},i=1,...,n}, are assembled into a rigid body, then the momentum of the system can be written in terms of positions relative to a reference point R{displaystyle mathbf {R} }, and absolute velocities vi{displaystyle mathbf {v} _{i}}:

Δri=riR,vi=ω×(riR)+V=ω×Δri+V,{displaystyle {begin{aligned}Delta mathbf {r} _{i}&=mathbf {r} _{i}-mathbf {R} ,mathbf {v} _{i}&={boldsymbol {omega }}times left(mathbf {r} _{i}-mathbf {R} right)+mathbf {V} ={boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {V} ,end{aligned}}}

where ω{displaystyle {boldsymbol {omega }}} is the angular velocity of the system and V{displaystyle mathbf {V} } is the velocity of R{displaystyle mathbf {R} }.

For planar movement the angular velocity vector is directed along the unit vector k{displaystyle mathbf {k} } which is perpendicular to the plane of movement. Introduce the unit vectors ei{displaystyle mathbf {e} _{i}} from the reference point R{displaystyle mathbf {R} } to a point ri{displaystyle mathbf {r} _{i}}, and the unit vector t^i=k^×e^i{displaystyle mathbf {hat {t}} _{i}=mathbf {hat {k}} times mathbf {hat {e}} _{i}}, so

e^i=ΔriΔri,k^=ωω,t^i=k^×e^i,vi=ω×Δri+V=ωk^×Δrie^i+V=ωΔrit^i+V{displaystyle {begin{aligned}mathbf {hat {e}} _{i}&={frac {Delta mathbf {r} _{i}}{Delta r_{i}}},quad mathbf {hat {k}} ={frac {boldsymbol {omega }}{omega }},quad mathbf {hat {t}} _{i}=mathbf {hat {k}} times mathbf {hat {e}} _{i},mathbf {v} _{i}&={boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {V} =omega mathbf {hat {k}} times Delta r_{i}mathbf {hat {e}} _{i}+mathbf {V} =omega ,Delta r_{i}mathbf {hat {t}} _{i}+mathbf {V} end{aligned}}}

This defines the relative position vector and the velocity vector for the rigid system of the particles moving in a plane.

Note on the cross product: When a body moves parallel to a ground plane, the trajectories of all the points in the body lie in planes parallel to this ground plane. This means that any rotation that the body undergoes must be around an axis perpendicular to this plane. Planar movement is often presented as projected onto this ground plane so that the axis of rotation appears as a point. In this case, the angular velocity and angular acceleration of the body are scalars and the fact that they are vectors along the rotation axis is ignored. This is usually preferred for introductions to the topic. But in the case of moment of inertia, the combination of mass and geometry benefits from the geometric properties of the cross product. For this reason, in this section on planar movement the angular velocity and accelerations of the body are vectors perpendicular to the ground plane, and the cross product operations are the same as used for the study of spatial rigid body movement.

Angular momentum[edit]

The angular momentum vector for the planar movement of a rigid system of particles is given by[14][17]

L=i=1nmiΔri×vi=i=1nmiΔrie^i×(ωΔrit^i+V)=(i=1nmiΔri2)ωk^+(i=1nmiΔrie^i)×V.{displaystyle {begin{aligned}mathbf {L} &=sum _{i=1}^{n}m_{i}Delta mathbf {r} _{i}times mathbf {v} _{i}&=sum _{i=1}^{n}m_{i},Delta r_{i}mathbf {hat {e}} _{i}times left(omega ,Delta r_{i}mathbf {hat {t}} _{i}+mathbf {V} right)&=left(sum _{i=1}^{n}m_{i},Delta r_{i}^{2}right)omega mathbf {hat {k}} +left(sum _{i=1}^{n}m_{i},Delta r_{i}mathbf {hat {e}} _{i}right)times mathbf {V} .end{aligned}}}

Use the center of massC{displaystyle mathbf {C} } as the reference point so

Δrie^i=riC,i=1nmiΔrie^i=0,{displaystyle {begin{aligned}Delta r_{i}mathbf {hat {e}} _{i}&=mathbf {r} _{i}-mathbf {C} ,sum _{i=1}^{n}m_{i},Delta r_{i}mathbf {hat {e}} _{i}&=0,end{aligned}}}

and define the moment of inertia relative to the center of mass IC{displaystyle I_{mathbf {C} }} as

IC=imiΔri2,{displaystyle I_{mathbf {C} }=sum _{i}m_{i},Delta r_{i}^{2},}

then the equation for angular momentum simplifies to[18]:1028

L=ICωk^.{displaystyle mathbf {L} =I_{mathbf {C} }omega mathbf {hat {k}} .}

The moment of inertia IC{displaystyle I_{mathbf {C} }} about an axis perpendicular to the movement of the rigid system and through the center of mass is known as the polar moment of inertia. Specifically, it is the second moment of mass with respect to the orthogonal distance from an axis (or pole).

For a given amount of angular momentum, a decrease in the moment of inertia results in an increase in the angular velocity. Figure skaters can change their moment of inertia by pulling in their arms. Thus, the angular velocity achieved by a skater with outstretched arms results in a greater angular velocity when the arms are pulled in, because of the reduced moment of inertia. A figure skater is not, however, a rigid body.

Kinetic energy[edit]

This 1906 rotary shear uses the moment of inertia of two flywheels to store kinetic energy which when released is used to cut metal stock (International Library of Technology, 1906).

The kinetic energy of a rigid system of particles moving in the plane is given by[14][17]

EK=12i=1nmivivi,=12i=1nmi(ωΔrit^i+V)(ωΔrit^i+V),=12ω2(i=1nmiΔri2t^it^i)+ωV(i=1nmiΔrit^i)+12(i=1nmi)VV.{displaystyle {begin{aligned}E_{text{K}}&={frac {1}{2}}sum _{i=1}^{n}m_{i}mathbf {v} _{i}cdot mathbf {v} _{i},&={frac {1}{2}}sum _{i=1}^{n}m_{i}left(omega ,Delta r_{i}mathbf {hat {t}} _{i}+mathbf {V} right)cdot left(omega ,Delta r_{i}mathbf {hat {t}} _{i}+mathbf {V} right),&={frac {1}{2}}omega ^{2}left(sum _{i=1}^{n}m_{i},Delta r_{i}^{2}mathbf {hat {t}} _{i}cdot mathbf {hat {t}} _{i}right)+omega mathbf {V} cdot left(sum _{i=1}^{n}m_{i},Delta r_{i}mathbf {hat {t}} _{i}right)+{frac {1}{2}}left(sum _{i=1}^{n}m_{i}right)mathbf {V} cdot mathbf {V} .end{aligned}}}

Let the reference point be the center of mass C{displaystyle mathbf {C} } of the system so the second term becomes zero, and introduce the moment of inertia IC{displaystyle I_{mathbf {C} }} so the kinetic energy is given by[18]:1084

EK=12ICω2+12MVV.{displaystyle E_{text{K}}={frac {1}{2}}I_{mathbf {C} }omega ^{2}+{frac {1}{2}}Mmathbf {V} cdot mathbf {V} .}

The moment of inertia IC{displaystyle I_{mathbf {C} }} is the polar moment of inertia of the body.

Newton's laws[edit]

A 1920s John Deere tractor with the spoked flywheel on the engine. The large moment of inertia of the flywheel smooths the operation of the tractor

Newton's laws for a rigid system of n{displaystyle n} particles, Pi,i=1,...,n{displaystyle P_{i},i=1,...,n}, can be written in terms of a resultant force and torque at a reference point R{displaystyle mathbf {R} }, to yield[14][17]

F=i=1nmiAi,τ=i=1nΔri×miAi,{displaystyle {begin{aligned}mathbf {F} &=sum _{i=1}^{n}m_{i}mathbf {A} _{i},{boldsymbol {tau }}&=sum _{i=1}^{n}Delta mathbf {r} _{i}times m_{i}mathbf {A} _{i},end{aligned}}}

where ri{displaystyle mathbf {r} _{i}} denotes the trajectory of each particle.

The kinematics of a rigid body yields the formula for the acceleration of the particle Pi{displaystyle P_{i}} in terms of the position R{displaystyle mathbf {R} } and acceleration A{displaystyle mathbf {A} } of the reference particle as well as the angular velocity vector ω{displaystyle {boldsymbol {omega }}} and angular acceleration vector α{displaystyle {boldsymbol {alpha }}} of the rigid system of particles as,

Ai=α×Δri+ω×ω×Δri+A.{displaystyle mathbf {A} _{i}={boldsymbol {alpha }}times Delta mathbf {r} _{i}+{boldsymbol {omega }}times {boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {A} .}

For systems that are constrained to planar movement, the angular velocity and angular acceleration vectors are directed along k^{displaystyle mathbf {hat {k}} } perpendicular to the plane of movement, which simplifies this acceleration equation. In this case, the acceleration vectors can be simplified by introducing the unit vectors e^i{displaystyle mathbf {hat {e}} _{i}} from the reference point R{displaystyle mathbf {R} } to a point ri{displaystyle mathbf {r} _{i}} and the unit vectors t^i=k^×e^i{displaystyle mathbf {hat {t}} _{i}=mathbf {hat {k}} times mathbf {hat {e}} _{i}}, so

Ai=αk^×Δrie^iωk^×ωk^×Δrie^i+A=αΔrit^iω2Δrie^i+A.{displaystyle {begin{aligned}mathbf {A} _{i}&=alpha mathbf {hat {k}} times Delta r_{i}mathbf {hat {e}} _{i}-omega mathbf {hat {k}} times omega mathbf {hat {k}} times Delta r_{i}mathbf {hat {e}} _{i}+mathbf {A} &=alpha Delta r_{i}mathbf {hat {t}} _{i}-omega ^{2}Delta r_{i}mathbf {hat {e}} _{i}+mathbf {A} .end{aligned}}}

This yields the resultant torque on the system as

τ=i=1nmiΔrie^i×(αΔrit^iω2Δrie^i+A)=(i=1nmiΔri2)αk^+(i=1nmiΔrie^i)×A,{displaystyle {begin{aligned}{boldsymbol {tau }}&=sum _{i=1}^{n}m_{i},Delta r_{i}mathbf {hat {e}} _{i}times left(alpha Delta r_{i}mathbf {hat {t}} _{i}-omega ^{2}Delta r_{i}mathbf {hat {e}} _{i}+mathbf {A} right)&=left(sum _{i=1}^{n}m_{i},Delta r_{i}^{2}right)alpha mathbf {hat {k}} +left(sum _{i=1}^{n}m_{i},Delta r_{i}mathbf {hat {e}} _{i}right)times mathbf {A} ,end{aligned}}}

where e^i×e^i=0{displaystyle mathbf {hat {e}} _{i}times mathbf {hat {e}} _{i}=mathbf {0} }, and e^i×t^i=k^{displaystyle mathbf {hat {e}} _{i}times mathbf {hat {t}} _{i}=mathbf {hat {k}} } is the unit vector perpendicular to the plane for all of the particles Pi{displaystyle P_{i}}.

Use the center of massC{displaystyle mathbf {C} } as the reference point and define the moment of inertia relative to the center of mass IC{displaystyle I_{mathbf {C} }}, then the equation for the resultant torque simplifies to[18]:1029

τ=ICαk^.{displaystyle {boldsymbol {tau }}=I_{mathbf {C} }alpha mathbf {hat {k}} .}

Motion in space of a rigid body, and the inertia matrix[edit]

The scalar moments of inertia appear as elements in a matrix when a system of particles is assembled into a rigid body that moves in three-dimensional space. This inertia matrix appears in the calculation of the angular momentum, kinetic energy and resultant torque of the rigid system of particles.[3][4][5][6][25]

Let the system of n{displaystyle n} particles, Pi,i=1,...,n{displaystyle P_{i},i=1,...,n} be located at the coordinates ri{displaystyle mathbf {r} _{i}} with velocities vi{displaystyle mathbf {v} _{i}} relative to a fixed reference frame. For a (possibly moving) reference point R{displaystyle mathbf {R} }, the relative positions are

Δri=riR{displaystyle Delta mathbf {r} _{i}=mathbf {r} _{i}-mathbf {R} }

and the (absolute) velocities are

vi=ω×Δri+VR{displaystyle mathbf {v} _{i}={boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {V} _{mathbf {R} }}

where ω{displaystyle {boldsymbol {omega }}} is the angular velocity of the system, and VR{displaystyle mathbf {V_{R}} } is the velocity of R{displaystyle mathbf {R} }.

Angular momentum[edit]

Note that the cross product can be equivalently written as matrix multiplication by combining the first operand and the operator into a, skew-symmetric, matrix, [b]{displaystyle left[mathbf {b} right]}, constructed from the components of b=(bx,by,bz){displaystyle mathbf {b} =(b_{x},b_{y},b_{z})}:

b×y[b]y[b][0bzbybz0bxbybx0].{displaystyle {begin{aligned}mathbf {b} times mathbf {y} &equiv left[mathbf {b} right]mathbf {y} left[mathbf {b} right]&equiv {begin{bmatrix}0&-b_{z}&b_{y}b_{z}&0&-b_{x}-b_{y}&b_{x}&0end{bmatrix}}.end{aligned}}}

The inertia matrix is constructed by considering the angular momentum, with the reference point R{displaystyle mathbf {R} } of the body chosen to be the center of mass C{displaystyle mathbf {C} }:[3][6]

L=i=1nmiΔri×vi=i=1nmiΔri×(ω×Δri+VR)=(i=1nmiΔri×(Δri×ω))+(i=1nmiΔri×VR),{displaystyle {begin{aligned}mathbf {L} &=sum _{i=1}^{n}m_{i},Delta mathbf {r} _{i}times mathbf {v} _{i}&=sum _{i=1}^{n}m_{i},Delta mathbf {r} _{i}times left({boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {V} _{mathbf {R} }right)&=left(-sum _{i=1}^{n}m_{i},Delta mathbf {r} _{i}times left(Delta mathbf {r} _{i}times {boldsymbol {omega }}right)right)+left(sum _{i=1}^{n}m_{i},Delta mathbf {r} _{i}times mathbf {V} _{mathbf {R} }right),end{aligned}}}

where the terms containing VR{displaystyle mathbf {V_{R}} } (=C{displaystyle =mathbf {C} }) sum to zero by the definition of center of mass.

Then, the skew-symmetric matrix [Δri]{displaystyle [Delta mathbf {r} _{i}]} obtained from the relative position vector Δri=riC{displaystyle Delta mathbf {r} _{i}=mathbf {r} _{i}-mathbf {C} }, can be used to define,

L=(i=1nmi[Δri]2)ω=ICω,{displaystyle mathbf {L} =left(-sum _{i=1}^{n}m_{i}left[Delta mathbf {r} _{i}right]^{2}right){boldsymbol {omega }}=mathbf {I} _{mathbf {C} }{boldsymbol {omega }},}

where IC{displaystyle mathbf {I_{C}} } defined by

IC=i=1nmi[Δri]2,{displaystyle mathbf {I} _{mathbf {C} }=-sum _{i=1}^{n}m_{i}left[Delta mathbf {r} _{i}right]^{2},}

is the symmetric inertia matrix of the rigid system of particles measured relative to the center of mass C{displaystyle mathbf {C} }.

Kinetic energy[edit]

The kinetic energy of a rigid system of particles can be formulated in terms of the center of mass and a matrix of mass moments of inertia of the system. Let the system of n{displaystyle n} particles Pi,i=1,...,n{displaystyle P_{i},i=1,...,n} be located at the coordinates ri{displaystyle mathbf {r} _{i}} with velocities vi{displaystyle mathbf {v} _{i}}, then the kinetic energy is[3][6]

EK=12i=1nmivivi=12i=1nmi(ω×Δri+VC)(ω×Δri+VC),{displaystyle E_{text{K}}={frac {1}{2}}sum _{i=1}^{n}m_{i}mathbf {v} _{i}cdot mathbf {v} _{i}={frac {1}{2}}sum _{i=1}^{n}m_{i}left({boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {V} _{mathbf {C} }right)cdot left({boldsymbol {omega }}times Delta mathbf {r} _{i}+mathbf {V} _{mathbf {C} }right),}

where Δri=riC{displaystyle Delta mathbf {r} _{i}=mathbf {r} _{i}-mathbf {C} } is the position vector of a particle relative to the center of mass.

This equation expands to yield three terms

EK=12(i=1nmi(ω×Δri)(ω×Δri))+(i=1nmiVC(ω×Δri))+12(i=1nmiVCVC).{displaystyle E_{text{K}}={frac {1}{2}}left(sum _{i=1}^{n}m_{i}left({boldsymbol {omega }}times Delta mathbf {r} _{i}right)cdot left({boldsymbol {omega }}times Delta mathbf {r} _{i}right)right)+left(sum _{i=1}^{n}m_{i}mathbf {V} _{mathbf {C} }cdot left({boldsymbol {omega }}times Delta mathbf {r} _{i}right)right)+{frac {1}{2}}left(sum _{i=1}^{n}m_{i}mathbf {V} _{mathbf {C} }cdot mathbf {V} _{mathbf {C} }right).}

The second term in this equation is zero because C{displaystyle mathbf {C} } is the center of mass. Introduce the skew-symmetric matrix [Δri]{displaystyle [Delta mathbf {r} _{i}]} so the kinetic energy becomes

EK=12(i=1nmi([Δri]ω)([Δri]ω))+12(i=1nmi)VCVC=12(i=1nmi(ωT[Δri]T[Δri]ω))+12(i=1nmi)VCVC=12ω(i=1nmi[Δri]2)ω+12(i=1nmi)VCVC.{displaystyle {begin{aligned}E_{text{K}}&={frac {1}{2}}left(sum _{i=1}^{n}m_{i}left(left[Delta mathbf {r} _{i}right]{boldsymbol {omega }}right)cdot left(left[Delta mathbf {r} _{i}right]{boldsymbol {omega }}right)right)+{frac {1}{2}}left(sum _{i=1}^{n}m_{i}right)mathbf {V} _{mathbf {C} }cdot mathbf {V} _{mathbf {C} }&={frac {1}{2}}left(sum _{i=1}^{n}m_{i}left({boldsymbol {omega }}^{mathsf {T}}left[Delta mathbf {r} _{i}right]^{mathsf {T}}left[Delta mathbf {r} _{i}right]{boldsymbol {omega }}right)right)+{frac {1}{2}}left(sum _{i=1}^{n}m_{i}right)mathbf {V} _{mathbf {C} }cdot mathbf {V} _{mathbf {C} }&={frac {1}{2}}{boldsymbol {omega }}cdot left(-sum _{i=1}^{n}m_{i}left[Delta mathbf {r} _{i}right]^{2}right){boldsymbol {omega }}+{frac {1}{2}}left(sum _{i=1}^{n}m_{i}right)mathbf {V} _{mathbf {C} }cdot mathbf {V} _{mathbf {C} }.end{aligned}}}

Thus, the kinetic energy of the rigid system of particles is given by

EK=12ωICω+12MVC2.{displaystyle E_{text{K}}={frac {1}{2}}{boldsymbol {omega }}cdot mathbf {I} _{mathbf {C} }{boldsymbol {omega }}+{frac {1}{2}}Mmathbf {V} _{mathbf {C} }^{2}.}

where IC{displaystyle mathbf {I_{C}} } is the inertia matrix relative to the center of mass and M{displaystyle M} is the total mass.

Resultant torque[edit]

The inertia matrix appears in the application of Newton's second law to a rigid assembly of particles. The resultant torque on this system is,[3][6]

τ=i=1n(riR)×miai,{displaystyle {boldsymbol {tau }}=sum _{i=1}^{n}left(mathbf {r_{i}} -mathbf {R} right)times m_{i}mathbf {a} _{i},}

where ai{displaystyle mathbf {a} _{i}} is the acceleration of the particle Pi{displaystyle P_{i}}. The kinematics of a rigid body yields the formula for the acceleration of the particle Pi{displaystyle P_{i}} in terms of the position R{displaystyle mathbf {R} } and acceleration AR{displaystyle mathbf {A} _{mathbf {R} }} of the reference point, as well as the angular velocity vector ω{displaystyle {boldsymbol {omega }}} and angular acceleration vector α{displaystyle {boldsymbol {alpha }}} of the rigid system as,

ai=α×(riR)+ω×ω×(riR)+AR.{displaystyle mathbf {a} _{i}={boldsymbol {alpha }}times left(mathbf {r} _{i}-mathbf {R} right)+{boldsymbol {omega }}times {boldsymbol {omega }}times left(mathbf {r} _{i}-mathbf {R} right)+mathbf {A} _{mathbf {R} }.}

Use the center of mass C{displaystyle mathbf {C} } as the reference point, and introduce the skew-symmetric matrix [Δri]=[riC]{displaystyle left[Delta mathbf {r} _{i}right]=left[mathbf {r} _{i}-mathbf {C} right]} to represent the cross product (riC)×{displaystyle (mathbf {r} _{i}-mathbf {C} )times }, to obtain

τ=(i=1nmi[Δri]2)α+ω×(i=1nmi[Δri]2)ω{displaystyle {boldsymbol {tau }}=left(-sum _{i=1}^{n}m_{i}left[Delta mathbf {r} _{i}right]^{2}right){boldsymbol {alpha }}+{boldsymbol {omega }}times left(-sum _{i=1}^{n}m_{i}left[Delta mathbf {r} _{i}right]^{2}right){boldsymbol {omega }}}

The calculation uses the identity

Δri×(ω×(ω×Δri))+ω×((ω×Δri)×Δri)=0,{displaystyle Delta mathbf {r} _{i}times left({boldsymbol {omega }}times left({boldsymbol {omega }}times Delta mathbf {r} _{i}right)right)+{boldsymbol {omega }}times left(left({boldsymbol {omega }}times Delta mathbf {r} _{i}right)times Delta mathbf {r} _{i}right)=0,}

obtained from the Jacobi identity for the triple cross product as shown in the proof below:

Proof
τ=i=1n(riR)×(miai)=i=1nΔri×(miai)=i=1nmi[Δri×ai] cross-product scalar multiplication=i=1nmi[Δri×(atangential,i+acentripetal,i+AR)]=i=1nmi[Δri×(atangential,i+acentripetal,i+0)]R is either at rest or moving at a constant velocity but not accelerated, or the origin of the fixed (world) coordinate reference system is placed at the center of mass C=i=1nmi[Δri×atangential,i+Δri×acentripetal,i] cross-product distributivity over addition=i=1nmi[Δri×(α×Δri)+Δri×(ω×vtangential,i)]τ=i=1nmi[Δri×(α×Δri)+Δri×(ω×(ω×Δri))]{displaystyle {begin{aligned}{boldsymbol {tau }}&=sum _{i=1}^{n}(mathbf {r_{i}} -mathbf {R} )times (m_{i}mathbf {a} _{i})&=sum _{i=1}^{n}{boldsymbol {Delta }}mathbf {r} _{i}times (m_{i}mathbf {a} _{i})&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times mathbf {a} _{i}];ldots {text{ cross-product scalar multiplication}}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times (mathbf {a} _{{text{tangential}},i}+mathbf {a} _{{text{centripetal}},i}+mathbf {A} _{mathbf {R} })]&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times (mathbf {a} _{{text{tangential}},i}+mathbf {a} _{{text{centripetal}},i}+0)]&;;;;;ldots ;mathbf {R} {text{ is either at rest or moving at a constant velocity but not accelerated, or }}&;;;;;;;;;;;{text{the origin of the fixed (world) coordinate reference system is placed at the center of mass }}mathbf {C} &=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times mathbf {a} _{{text{tangential}},i}+{boldsymbol {Delta }}mathbf {r} _{i}times mathbf {a} _{{text{centripetal}},i}];ldots {text{ cross-product distributivity over addition}}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times mathbf {v} _{{text{tangential}},i})]{boldsymbol {tau }}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))]end{aligned}}}

Then, the following Jacobi identity is used on the last term:

0=Δri×(ω×(ω×Δri))+ω×((ω×Δri)×Δri)+(ω×Δri)×(Δri×ω)=Δri×(ω×(ω×Δri))+ω×((ω×Δri)×Δri)+(ω×Δri)×(ω×Δri) cross-product anticommutativity=Δri×(ω×(ω×Δri))+ω×((ω×Δri)×Δri)+[(ω×Δri)×(ω×Δri)] cross-product scalar multiplication=Δri×(ω×(ω×Δri))+ω×((ω×Δri)×Δri)+[0] self cross-product0=Δri×(ω×(ω×Δri))+ω×((ω×Δri)×Δri){displaystyle {begin{aligned}0&={boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))+{boldsymbol {omega }}times (({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times {boldsymbol {Delta }}mathbf {r} _{i})+({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {omega }})&={boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))+{boldsymbol {omega }}times (({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times {boldsymbol {Delta }}mathbf {r} _{i})+({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times -({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i});ldots {text{ cross-product anticommutativity}}&={boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))+{boldsymbol {omega }}times (({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times {boldsymbol {Delta }}mathbf {r} _{i})+-[({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})];ldots {text{ cross-product scalar multiplication}}&={boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))+{boldsymbol {omega }}times (({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times {boldsymbol {Delta }}mathbf {r} _{i})+-[0];ldots {text{ self cross-product}}0&={boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))+{boldsymbol {omega }}times (({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times {boldsymbol {Delta }}mathbf {r} _{i})end{aligned}}}

The result of applying Jacobi identity can then be continued as follows:

Δri×(ω×(ω×Δri))=[ω×((ω×Δri)×Δri)]=[(ω×Δri)(ωΔri)Δri(ω(ω×Δri))] vector triple product=[(ω×Δri)(ωΔri)Δri(Δri(ω×ω))] scalar triple product=[(ω×Δri)(ωΔri)Δri(Δri(0))] self cross-product=[(ω×Δri)(ωΔri)]=[ω×(Δri(ωΔri))] cross-product scalar multiplication=ω×(Δri(ωΔri)) cross-product scalar multiplicationΔri×(ω×(ω×Δri))=ω×(Δri(Δriω)) dot-product commutativity{displaystyle {begin{aligned}{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))&=-[{boldsymbol {omega }}times (({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})times {boldsymbol {Delta }}mathbf {r} _{i})]&=-[({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})({boldsymbol {omega }}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {omega }}cdot ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))];ldots {text{ vector triple product}}&=-[({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})({boldsymbol {omega }}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot ({boldsymbol {omega }}times {boldsymbol {omega }}))];ldots {text{ scalar triple product}}&=-[({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})({boldsymbol {omega }}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot (0))];ldots {text{ self cross-product}}&=-[({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})({boldsymbol {omega }}cdot {boldsymbol {Delta }}mathbf {r} _{i})]&=-[{boldsymbol {omega }}times ({boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {omega }}cdot {boldsymbol {Delta }}mathbf {r} _{i}))];ldots {text{ cross-product scalar multiplication}}&={boldsymbol {omega }}times -({boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {omega }}cdot {boldsymbol {Delta }}mathbf {r} _{i}));ldots {text{ cross-product scalar multiplication}}{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))&={boldsymbol {omega }}times -({boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }}));ldots {text{ dot-product commutativity}}end{aligned}}}

The final result can then be substituted to the main proof as follows:

τ=i=1nmi[Δri×(α×Δri)+Δri×(ω×(ω×Δri))]=i=1nmi[Δri×(α×Δri)+ω×(Δri(Δriω))]=i=1nmi[Δri×(α×Δri)+ω×{0Δri(Δriω)}]=i=1nmi[Δri×(α×Δri)+ω×{[ω(ΔriΔri)ω(ΔriΔri)]Δri(Δriω)}]ω(ΔriΔri)ω(ΔriΔri)=0=i=1nmi[Δri×(α×Δri)+ω×{[ω(ΔriΔri)Δri(Δriω)]ω(ΔriΔri)}] addition associativity{displaystyle {begin{aligned}{boldsymbol {tau }}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i}))]&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times -({boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }}))]&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {0-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})}]&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {[{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})]-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})}];ldots ;{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})=0&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {[{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})]-{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})}];ldots {text{ addition associativity}}end{aligned}}}

=i=1nmi[Δri×(α×Δri)+ω×{ω(ΔriΔri)Δri(Δriω)}ω×ω(ΔriΔri)] cross-product distributivity over addition=i=1nmi[Δri×(α×Δri)+ω×{ω(ΔriΔri)Δri(Δriω)}(ΔriΔri)(ω×ω)] cross-product scalar multiplication=i=1nmi[Δri×(α×Δri)+ω×{ω(ΔriΔri)Δri(Δriω)}(ΔriΔri)(0)] self cross-product=i=1nmi[Δri×(α×Δri)+ω×{ω(ΔriΔri)Δri(Δriω)}]=i=1nmi[Δri×(α×Δri)+ω×{Δri×(ω×Δri)}] vector triple product=i=1nmi[Δri×(Δri×α)+ω×{Δri×(Δri×ω)}] cross-product anticommutativity=i=1nmi[Δri×(Δri×α)+ω×{Δri×(Δri×ω)}] cross-product scalar multiplication=i=1nmi[Δri×(Δri×α)]+i=1nmi[ω×{Δri×(Δri×ω)}] summation distributivityτ=i=1nmi[Δri×(Δri×α)]+ω×i=1nmi[Δri×(Δri×ω)]ω is not characteristic of particle Pi{displaystyle {begin{aligned}quad quad &=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})}-{boldsymbol {omega }}times {boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})];ldots {text{ cross-product distributivity over addition}}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})}-({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})({boldsymbol {omega }}times {boldsymbol {omega }})];ldots {text{ cross-product scalar multiplication}}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})}-({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})(0)];ldots {text{ self cross-product}}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {{boldsymbol {omega }}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {Delta }}mathbf {r} _{i})-{boldsymbol {Delta }}mathbf {r} _{i}({boldsymbol {Delta }}mathbf {r} _{i}cdot {boldsymbol {omega }})}]&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {alpha }}times {boldsymbol {Delta }}mathbf {r} _{i})+{boldsymbol {omega }}times {{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {omega }}times {boldsymbol {Delta }}mathbf {r} _{i})}];ldots {text{ vector triple product}}&=sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times -({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {alpha }})+{boldsymbol {omega }}times {{boldsymbol {Delta }}mathbf {r} _{i}times -({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {omega }})}];ldots {text{ cross-product anticommutativity}}&=-sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {alpha }})+{boldsymbol {omega }}times {{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {omega }})}];ldots {text{ cross-product scalar multiplication}}&=-sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {alpha }})]+-sum _{i=1}^{n}m_{i}[{boldsymbol {omega }}times {{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {omega }})}];ldots {text{ summation distributivity}}{boldsymbol {tau }}&=-sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {alpha }})]+{boldsymbol {omega }}times -sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {omega }})];ldots ;{boldsymbol {omega }}{text{ is not characteristic of particle }}P_{i}end{aligned}}}

Notice that for any vector u{displaystyle mathbf {u} ,}, the following holds:

i=1nmi[Δri×(Δri×u)]=i=1nmi([0Δr3,iΔr2,iΔr3,i0Δr1,iΔr2,iΔr1,i0]([0Δr3,iΔr2,iΔr3,i0Δr1,iΔr2,iΔr1,i0][u1u2u3])) cross-product as matrix multiplication=i=1nmi([0Δr3,iΔr2,iΔr3,i0Δr1,iΔr2,iΔr1,i0][Δr3,iu2+Δr2,iu3+Δr3,iu1Δr1,iu3Δr2,iu1+Δr1,iu2])=i=1nmi[Δr3,i(+Δr3,iu1Δr1,iu3)+Δr2,i(Δr2,iu1+Δr1,iu2)+Δr3,i(Δr3,iu2+Δr2,iu3)Δr1,i(Δr2,iu1+Δr1,iu2)Δr2,i(Δr3,iu2+Δr2,iu3)+Δr1,i(+Δr3,iu1Δr1,iu3)]=i=1nmi[Δr3,i2u1+Δr1,iΔr3,iu3Δr2,i2u1+Δr1,iΔr2,iu2Δr3,i2u2+Δr2,iΔr3,iu3+Δr2,iΔr1,iu1Δr1,i2u2+Δr3,iΔr2,iu2Δr2,i2u3+Δr3,iΔr1,iu1Δr1,i2u3]=i=1nmi[(Δr2,i2+Δr3,i2)u1+Δr1,iΔr2,iu2+Δr1,iΔr3,iu3+Δr2,iΔr1,iu1(Δr1,i2+Δr3,i2)u2+Δr2,iΔr3,iu3+Δr3,iΔr1,iu1+Δr3,iΔr2,iu2(Δr1,i2+Δr2,i2)u3]=i=1nmi[(Δr2,i2+Δr3,i2)Δr1,iΔr2,iΔr1,iΔr3,iΔr2,iΔr1,i(Δr1,i2+Δr3,i2)Δr2,iΔr3,iΔr3,iΔr1,iΔr3,iΔr2,i(Δr1,i2+Δr2,i2)][u1u2u3]=i=1nmi[Δri]2ui=1nmi[Δri×(Δri×u)]=(i=1nmi[Δri]2)uu is not characteristic of Pi{displaystyle {begin{aligned}-sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times mathbf {u} )]&=-sum _{i=1}^{n}m_{i}left({begin{bmatrix}0&-Delta r_{3,i}&Delta r_{2,i}Delta r_{3,i}&0&-Delta r_{1,i}-Delta r_{2,i}&Delta r_{1,i}&0end{bmatrix}}left({begin{bmatrix}0&-Delta r_{3,i}&Delta r_{2,i}Delta r_{3,i}&0&-Delta r_{1,i}-Delta r_{2,i}&Delta r_{1,i}&0end{bmatrix}}{begin{bmatrix}u_{1}u_{2}u_{3}end{bmatrix}}right)right);ldots {text{ cross-product as matrix multiplication}}[6pt]&=-sum _{i=1}^{n}m_{i}left({begin{bmatrix}0&-Delta r_{3,i}&Delta r_{2,i}Delta r_{3,i}&0&-Delta r_{1,i}-Delta r_{2,i}&Delta r_{1,i}&0end{bmatrix}}{begin{bmatrix}-Delta r_{3,i},u_{2}+Delta r_{2,i},u_{3}+Delta r_{3,i},u_{1}-Delta r_{1,i},u_{3}-Delta r_{2,i},u_{1}+Delta r_{1,i},u_{2}end{bmatrix}}right)[6pt]&=-sum _{i=1}^{n}m_{i}{begin{bmatrix}-Delta r_{3,i}(+Delta r_{3,i},u_{1}-Delta r_{1,i},u_{3})+Delta r_{2,i}(-Delta r_{2,i},u_{1}+Delta r_{1,i},u_{2})+Delta r_{3,i}(-Delta r_{3,i},u_{2}+Delta r_{2,i},u_{3})-Delta r_{1,i}(-Delta r_{2,i},u_{1}+Delta r_{1,i},u_{2})-Delta r_{2,i}(-Delta r_{3,i},u_{2}+Delta r_{2,i},u_{3})+Delta r_{1,i}(+Delta r_{3,i},u_{1}-Delta r_{1,i},u_{3})end{bmatrix}}[6pt]&=-sum _{i=1}^{n}m_{i}{begin{bmatrix}-Delta r_{3,i}^{2},u_{1}+Delta r_{1,i}Delta r_{3,i},u_{3}-Delta r_{2,i}^{2},u_{1}+Delta r_{1,i}Delta r_{2,i},u_{2}-Delta r_{3,i}^{2},u_{2}+Delta r_{2,i}Delta r_{3,i},u_{3}+Delta r_{2,i}Delta r_{1,i},u_{1}-Delta r_{1,i}^{2},u_{2}+Delta r_{3,i}Delta r_{2,i},u_{2}-Delta r_{2,i}^{2},u_{3}+Delta r_{3,i}Delta r_{1,i},u_{1}-Delta r_{1,i}^{2},u_{3}end{bmatrix}}[6pt]&=-sum _{i=1}^{n}m_{i}{begin{bmatrix}-(Delta r_{2,i}^{2}+Delta r_{3,i}^{2}),u_{1}+Delta r_{1,i}Delta r_{2,i},u_{2}+Delta r_{1,i}Delta r_{3,i},u_{3}+Delta r_{2,i}Delta r_{1,i},u_{1}-(Delta r_{1,i}^{2}+Delta r_{3,i}^{2}),u_{2}+Delta r_{2,i}Delta r_{3,i},u_{3}+Delta r_{3,i}Delta r_{1,i},u_{1}+Delta r_{3,i}Delta r_{2,i},u_{2}-(Delta r_{1,i}^{2}+Delta r_{2,i}^{2}),u_{3}end{bmatrix}}[6pt]&=-sum _{i=1}^{n}m_{i}{begin{bmatrix}-(Delta r_{2,i}^{2}+Delta r_{3,i}^{2})&Delta r_{1,i}Delta r_{2,i}&Delta r_{1,i}Delta r_{3,i}Delta r_{2,i}Delta r_{1,i}&-(Delta r_{1,i}^{2}+Delta r_{3,i}^{2})&Delta r_{2,i}Delta r_{3,i}Delta r_{3,i}Delta r_{1,i}&Delta r_{3,i}Delta r_{2,i}&-(Delta r_{1,i}^{2}+Delta r_{2,i}^{2})end{bmatrix}}{begin{bmatrix}u_{1}u_{2}u_{3}end{bmatrix}}&=-sum _{i=1}^{n}m_{i}[Delta r_{i}]^{2}mathbf {u} [6pt]-sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times mathbf {u} )]&=left(-sum _{i=1}^{n}m_{i}[Delta r_{i}]^{2}right)mathbf {u} ;ldots ;mathbf {u} {text{ is not characteristic of }}P_{i}end{aligned}}}

Finally, the result is used to complete the main proof as follows:

τ=i=1nmi[Δri×(Δri×α)]+ω×i=1nmiΔri×(Δri×ω)]=(i=1nmi[Δri]2)α+ω×(i=1nmi[Δri]2)ω{displaystyle {begin{aligned}{boldsymbol {tau }}&=-sum _{i=1}^{n}m_{i}[{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {alpha }})]+{boldsymbol {omega }}times -sum _{i=1}^{n}m_{i}{boldsymbol {Delta }}mathbf {r} _{i}times ({boldsymbol {Delta }}mathbf {r} _{i}times {boldsymbol {omega }})]&=left(-sum _{i=1}^{n}m_{i}[Delta r_{i}]^{2}right){boldsymbol {alpha }}+{boldsymbol {omega }}times left(-sum _{i=1}^{n}m_{i}[Delta r_{i}]^{2}right){boldsymbol {omega }}end{aligned}}}

Thus, the resultant torque on the rigid system of particles is given by

τ=ICα+ω×ICω,{displaystyle {boldsymbol {tau }}=mathbf {I} _{mathbf {C} }{boldsymbol {alpha }}+{boldsymbol {omega }}times mathbf {I} _{mathbf {C} }{boldsymbol {omega }},}

where IC{displaystyle mathbf {I_{C}} } is the inertia matrix relative to the center of mass.

Parallel axis theorem[edit]

The inertia matrix of a body depends on the choice of the reference point. There is a useful relationship between the inertia matrix relative to the center of mass C{displaystyle mathbf {C} } and the inertia matrix relative to another point R{displaystyle mathbf {R} }. This relationship is called the parallel axis theorem.[3][6]

Consider the inertia matrix IR{displaystyle mathbf {I_{R}} } obtained for a rigid system of particles measured relative to a reference point R{displaystyle mathbf {R} }, given by

IR=i=1nmi[riR]2.{displaystyle mathbf {I} _{mathbf {R} }=-sum _{i=1}^{n}m_{i}left[mathbf {r} _{i}-mathbf {R} right]^{2}.}

Let C{displaystyle mathbf {C} } be the center of mass of the rigid system, then

R=(RC)+C=d+C,{displaystyle mathbf {R} =(mathbf {R} -mathbf {C} )+mathbf {C} =mathbf {d} +mathbf {C} ,}

where d{displaystyle mathbf {d} } is the vector from the center of mass C{displaystyle mathbf {C} } to the reference point R{displaystyle mathbf {R} }. Use this equation to compute the inertia matrix,

IR=i=1nmi[ri(C+d)]2=i=1nmi[(riC)d]2.{displaystyle mathbf {I} _{mathbf {R} }=-sum _{i=1}^{n}m_{i}[mathbf {r} _{i}-left(mathbf {C} +mathbf {d} right)]^{2}=-sum _{i=1}^{n}m_{i}[left(mathbf {r} _{i}-mathbf {C} right)-mathbf {d} ]^{2}.}

Distribute over the cross product to obtain

IR=(i=1nmi[riC]2)+(i=1nmi[riC])[d]+[d](i=1nmi[riC])(i=1nmi)[d]2.{displaystyle mathbf {I} _{mathbf {R} }=-left(sum _{i=1}^{n}m_{i}[mathbf {r} _{i}-mathbf {C} ]^{2}right)+left(sum _{i=1}^{n}m_{i}[mathbf {r} _{i}-mathbf {C} ]right)[mathbf {d} ]+[mathbf {d} ]left(sum _{i=1}^{n}m_{i}[mathbf {r} _{i}-mathbf {C} ]right)-left(sum _{i=1}^{n}m_{i}right)[mathbf {d} ]^{2}.}

The first term is the inertia matrix IC{displaystyle mathbf {I_{C}} } relative to the center of mass. The second and third terms are zero by definition of the center of mass C{displaystyle mathbf {C} }. And the last term is the total mass of the system multiplied by the square of the skew-symmetric matrix [d]{displaystyle [mathbf {d} ]} constructed from d{displaystyle mathbf {d} }.

The result is the parallel axis theorem,

IR=ICM[d]2,{displaystyle mathbf {I} _{mathbf {R} }=mathbf {I} _{mathbf {C} }-M[mathbf {d} ]^{2},}

where d{displaystyle mathbf {d} } is the vector from the center of mass C{displaystyle mathbf {C} } to the reference point R{displaystyle mathbf {R} }.

Note on the minus sign: By using the skew symmetric matrix of position vectors relative to the reference point, the inertia matrix of each particle has the form m[r]2{displaystyle -mleft[mathbf {r} right]^{2}}, which is similar to the mr2{displaystyle mr^{2}} that appears in planar movement. However, to make this to work out correctly a minus sign is needed. This minus sign can be absorbed into the term m[r]T[r]{displaystyle mleft[mathbf {r} right]^{mathsf {T}}left[mathbf {r} right]}, if desired, by using the skew-symmetry property of [r]{displaystyle [mathbf {r} ]}.

Scalar moment of inertia in a plane[edit]

The scalar moment of inertia, IL{displaystyle I_{L}}, of a body about a specified axis whose direction is specified by the unit vector k^{displaystyle mathbf {hat {k}} } and passes through the body at a point R{displaystyle mathbf {R} } is as follows:[6]

IL=k^(i=1Nmi[Δri]2)k^=k^IRk^=k^TIRk^,{displaystyle I_{L}=mathbf {hat {k}} cdot left(-sum _{i=1}^{N}m_{i}left[Delta mathbf {r} _{i}right]^{2}right)mathbf {hat {k}} =mathbf {hat {k}} cdot mathbf {I} _{mathbf {R} }mathbf {hat {k}} =mathbf {hat {k}} ^{mathsf {T}}mathbf {I} _{mathbf {R} }mathbf {hat {k}} ,}

where IR{displaystyle mathbf {I_{R}} } is the moment of inertia matrix of the system relative to the reference point R{displaystyle mathbf {R} }, and [Δri]{displaystyle [Delta mathbf {r} _{i}]} is the skew symmetric matrix obtained from the vector Δri=riR{displaystyle Delta mathbf {r} _{i}=mathbf {r} _{i}-mathbf {R} }.

This is derived as follows. Let a rigid assembly of n{displaystyle n} particles, Pi,i=1,...,n{displaystyle P_{i},i=1,...,n}, have coordinates ri{displaystyle mathbf {r} _{i}}. Choose R{displaystyle mathbf {R} } as a reference point and compute the moment of inertia around a line L defined by the unit vector k^{displaystyle mathbf {hat {k}} } through the reference point R{displaystyle mathbf {R} }, L(t)=R+tk^{displaystyle mathbf {L} (t)=mathbf {R} +tmathbf {hat {k}} }. The perpendicular vector from this line to the particle Pi{displaystyle P_{i}} is obtained from Δri{displaystyle Delta mathbf {r} _{i}} by removing the component that projects onto k^{displaystyle mathbf {hat {k}} }.

Δri=Δri(k^Δri)k^=(Ek^k^T)Δri,{displaystyle Delta mathbf {r} _{i}^{perp }=Delta mathbf {r} _{i}-left(mathbf {hat {k}} cdot Delta mathbf {r} _{i}right)mathbf {hat {k}} =left(mathbf {E} -mathbf {hat {k}} mathbf {hat {k}} ^{mathsf {T}}right)Delta mathbf {r} _{i},}

where E{displaystyle mathbf {E} } is the identity matrix, so as to avoid confusion with the inertia matrix, and k^k^T{displaystyle mathbf {hat {k}} mathbf {hat {k}} ^{mathsf {T}}} is the outer product matrix formed from the unit vector k^{displaystyle mathbf {hat {k}} } along the line L{displaystyle L}.

To relate this scalar moment of inertia to the inertia matrix of the body, introduce the skew-symmetric matrix [k^]{displaystyle left[mathbf {hat {k}} right]} such that [k^]y=k^×y{displaystyle left[mathbf {hat {k}} right]mathbf {y} =mathbf {hat {k}} times mathbf {y} }, then we have the identity

[k^]2|k^|2(Ek^k^T)=Ek^k^T,{displaystyle -left[mathbf {hat {k}} right]^{2}equiv left|mathbf {hat {k}} right|^{2}left(mathbf {E} -mathbf {hat {k}} mathbf {hat {k}} ^{mathsf {T}}right)=mathbf {E} -mathbf {hat {k}} mathbf {hat {k}} ^{mathsf {T}},}

noting that k^{displaystyle mathbf {hat {k}} } is a unit vector.

The magnitude squared of the perpendicular vector is

|Δri|2=([k^]2Δri)([k^]2Δri)=(k^×(k^×Δri))(k^×(k^×Δri)){displaystyle {begin{aligned}left|Delta mathbf {r} _{i}^{perp }right|^{2}&=left(-left[mathbf {hat {k}} right]^{2}Delta mathbf {r} _{i}right)cdot left(-left[mathbf {hat {k}} right]^{2}Delta mathbf {r} _{i}right)&=left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)cdot left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)end{aligned}}}

The simplification of this equation uses the triple scalar product identity

(k^×(k^×Δri))(k^×(k^×Δri))((k^×(k^×Δri))×k^)(k^×Δri),{displaystyle left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)cdot left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)equiv left(left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)times mathbf {hat {k}} right)cdot left(mathbf {hat {k}} times Delta mathbf {r} _{i}right),}

where the dot and the cross products have been interchanged. Exchanging products, and simplifying by noting that Δri{displaystyle Delta mathbf {r} _{i}} and k^{displaystyle mathbf {hat {k}} } are orthogonal:

(k^×(k^×Δri))(k^×(k^×Δri))=((k^×(k^×Δri))×k^)(k^×Δri)=(k^×Δri)(Δri×k^)=k^(Δri×Δri×k^)=k^[Δri]2k^.{displaystyle {begin{aligned}&left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)cdot left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)={}&left(left(mathbf {hat {k}} times left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)right)times mathbf {hat {k}} right)cdot left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)={}&left(mathbf {hat {k}} times Delta mathbf {r} _{i}right)cdot left(-Delta mathbf {r} _{i}times mathbf {hat {k}} right)={}&-mathbf {hat {k}} cdot left(Delta mathbf {r} _{i}times Delta mathbf {r} _{i}times mathbf {hat {k}} right)={}&-mathbf {hat {k}} cdot left[Delta mathbf {r} _{i}right]^{2}mathbf {hat {k}} .end{aligned}}}

Thus, the moment of inertia around the line L{displaystyle L} through R{displaystyle mathbf {R} } in the direction k^{displaystyle mathbf {hat {k}} } is obtained from the calculation

IL=i=1Nmi|Δri|2=i=1Nmik^[Δri]2k^=k^(i=1Nmi[Δri]2)k^=k^IRk^=k^TIRk^,{displaystyle {begin{aligned}I_{L}&=sum _{i=1}^{N}m_{i}left|Delta mathbf {r} _{i}^{perp }right|^{2}&=-sum _{i=1}^{N}m_{i}mathbf {hat {k}} cdot left[Delta mathbf {r} _{i}right]^{2}mathbf {hat {k}} =mathbf {hat {k}} cdot left(-sum _{i=1}^{N}m_{i}left[Delta mathbf {r} _{i}right]^{2}right)mathbf {hat {k}} &=mathbf {hat {k}} cdot mathbf {I} _{mathbf {R} }mathbf {hat {k}} =mathbf {hat {k}} ^{mathsf {T}}mathbf {I} _{mathbf {R} }mathbf {hat {k}} ,end{aligned}}}

where IR{displaystyle mathbf {I_{R}} } is the moment of inertia matrix of the system relative to the reference point R{displaystyle mathbf {R} }.

Moment Of Inertia Formulas Pdf Online

This shows that the inertia matrix can be used to calculate the moment of inertia of a body around any specified rotation axis in the body.

Inertia tensor[edit]

For the same object, different axes of rotation will have different moments of inertia about those axes. In general, the moments of inertia are not equal unless the object is symmetric about all axes. The moment of inertia tensor is a convenient way to summarize all moments of inertia of an object with one quantity. It may be calculated with respect to any point in space, although for practical purposes the center of mass is most commonly used.

Definition[edit]

For a rigid object of N{displaystyle N} point masses mk{displaystyle m_{k}}, the moment of inertia tensor is given by

I=[I11I12I13I21I22I23I31I32I33]{displaystyle mathbf {I} ={begin{bmatrix}I_{11}&I_{12}&I_{13}I_{21}&I_{22}&I_{23}I_{31}&I_{32}&I_{33}end{bmatrix}}}.

Its components are defined as

Iij=defk=1Nmk(r2δijxixj){displaystyle I_{ij} {stackrel {mathrm {def} }{=}} sum _{k=1}^{N}m_{k}(|mathbf {r} |^{2}delta _{ij}-x_{i}x_{j},)}

where

i, j equal 1, 2, or 3 for x, y, and z, respectively,
r=(x1, x2, x3) is the vector to the mass element dm from the point about which the tensor is calculated, r=||x||, and
δij{displaystyle delta _{ij}} is the Kronecker delta.

Note that, by the definition, I is a symmetric tensor.

The diagonal elements, also called the principal moments of inertia, are more succinctly written as

Ixx=defk=1Nmk(yk2+zk2),{displaystyle I_{xx} {stackrel {mathrm {def} }{=}} sum _{k=1}^{N}m_{k}(y_{k}^{2}+z_{k}^{2}),!}
Iyy=defk=1Nmk(xk2+zk2),{displaystyle I_{yy} {stackrel {mathrm {def} }{=}} sum _{k=1}^{N}m_{k}(x_{k}^{2}+z_{k}^{2}),!}
Izz=defk=1Nmk(xk2+yk2),{displaystyle I_{zz} {stackrel {mathrm {def} }{=}} sum _{k=1}^{N}m_{k}(x_{k}^{2}+y_{k}^{2}),!}

while the off-diagonal elements, also called the products of inertia, are

Ixy=Iyx=defk=1Nmkxkyk,{displaystyle I_{xy}=I_{yx} {stackrel {mathrm {def} }{=}} -sum _{k=1}^{N}m_{k}x_{k}y_{k},!}
Ixz=Izx=defk=1Nmkxkzk,{displaystyle I_{xz}=I_{zx} {stackrel {mathrm {def} }{=}} -sum _{k=1}^{N}m_{k}x_{k}z_{k},!} and
Iyz=Izy=defk=1Nmkykzk,{displaystyle I_{yz}=I_{zy} {stackrel {mathrm {def} }{=}} -sum _{k=1}^{N}m_{k}y_{k}z_{k},!}

Here Ixx{displaystyle I_{xx}} denotes the moment of inertia around the x{displaystyle x}-axis when the objects are rotated around the x-axis, Ixy{displaystyle I_{xy}} denotes the moment of inertia around the y{displaystyle y}-axis when the objects are rotated around the x{displaystyle x}-axis, and so on.

These quantities can be generalized to an object with distributed mass, described by a mass density function, in a similar fashion to the scalar moment of inertia. One then has

I=Vρ(x,y,z)(r2E3rr)dxdydz,{displaystyle mathbf {I} =iiint _{V}rho (x,y,z)left(|mathbf {r} |^{2}mathbf {E} _{3}-mathbf {r} otimes mathbf {r} right),dx,dy,dz,}

where rr{displaystyle mathbf {r} otimes mathbf {r} } is their outer product, E3 is the 3 × 3 identity matrix, and V is a region of space completely containing the object.

Alternatively it can also be written in terms of the angular momentum operator[r]x=r×x{displaystyle [mathbf {r} ]mathbf {x} =mathbf {r} times mathbf {x} }:

I=Vρ(r)[r]T[r]dV=Qρ(r)[r]2dV{displaystyle mathbf {I} =iiint limits _{V}rho (mathbf {r} )[mathbf {r} ]^{T}[mathbf {r} ],mathrm {d} V=-iiint limits _{Q}rho (mathbf {r} )[mathbf {r} ]^{2},mathrm {d} V}

The inertia tensor can be used in the same way as the inertia matrix to compute the scalar moment of inertia about an arbitrary axis in the direction n{displaystyle mathbf {n} },

In=nIn,{displaystyle I_{n}=mathbf {n} cdot mathbf {I} cdot mathbf {n} ,}

where the dot product is taken with the corresponding elements in the component tensors. A product of inertia term such as I12{displaystyle I_{12}} is obtained by the computation

I12=e1Ie2,{displaystyle I_{12}=mathbf {e} _{1}cdot mathbf {I} cdot mathbf {e} _{2},}

and can be interpreted as the moment of inertia around the x{displaystyle x}-axis when the object rotates around the y{displaystyle y}-axis.

The components of tensors of degree two can be assembled into a matrix. For the inertia tensor this matrix is given by,

I=[I11I12I13I21I22I23I31I32I33]=[IxxIxyIxzIyxIyyIyzIzxIzyIzz].{displaystyle mathbf {I} ={begin{bmatrix}I_{11}&I_{12}&I_{13}I_{21}&I_{22}&I_{23}I_{31}&I_{32}&I_{33}end{bmatrix}}={begin{bmatrix}I_{xx}&I_{xy}&I_{xz}I_{yx}&I_{yy}&I_{yz}I_{zx}&I_{zy}&I_{zz}end{bmatrix}}.}

It is common in rigid body mechanics to use notation that explicitly identifies the x{displaystyle x}, y{displaystyle y}, and z{displaystyle z}-axes, such as Ixx{displaystyle I_{xx}} and Ixy{displaystyle I_{xy}}, for the components of the inertia tensor.

Derivation of the tensor components[edit]

The distance r{displaystyle r} of a particle at x{displaystyle mathbf {x} } from the axis of rotation passing through the origin in the n^{displaystyle mathbf {hat {n}} } direction is |x(xn^)n^|{displaystyle |mathbf {x} -(mathbf {x} cdot mathbf {hat {n}} )mathbf {hat {n}} |}. By using the formula I=mr2{displaystyle I=mr^{2}} (and some simple vector algebra) it can be seen that the moment of inertia of this particle (about the axis of rotation passing through the origin in the n^{displaystyle mathbf {hat {n}} } direction) is I=m(|x|2(n^n^)(xn^)2).{displaystyle I=m(|mathbf {x} |^{2}(mathbf {hat {n}} cdot mathbf {hat {n}} )-(mathbf {x} cdot mathbf {hat {n}} )^{2}).}This is a quadratic form in n^{displaystyle mathbf {hat {n}} } and, after a bit more algebra, this leads to a tensor formula for the moment of inertia

I=m[n1,n2,n3][y2+z2xyxzyxx2+z2yzzxzyx2+y2][n1n2n3]{displaystyle {I}=m[n_{1},n_{2},n_{3}]{begin{bmatrix}y^{2}+z^{2}&-xy&-xz-yx&x^{2}+z^{2}&-yz-zx&-zy&x^{2}+y^{2}end{bmatrix}}{begin{bmatrix}n_{1}n_{2}n_{3}end{bmatrix}}}.

For multiple particles we need only recall that the moment of inertia is additive in order to see that this formula is correct.

Inertia matrix in different reference frames[edit]

The use of the inertia matrix in Newton's second law assumes its components are computed relative to axes parallel to the inertial frame and not relative to a body-fixed reference frame.[6][23] This means that as the body moves the components of the inertia matrix change with time. In contrast, the components of the inertia matrix measured in a body-fixed frame are constant.

Body frame[edit]

Let the body frame inertia matrix relative to the center of mass be denoted ICB{displaystyle mathbf {I} _{mathbf {C} }^{B}}, and define the orientation of the body frame relative to the inertial frame by the rotation matrix A{displaystyle mathbf {A} }, such that,

x=Ay,{displaystyle mathbf {x} =mathbf {A} mathbf {y} ,}

where vectors y{displaystyle mathbf {y} } in the body fixed coordinate frame have coordinates x{displaystyle mathbf {x} } in the inertial frame. Then, the inertia matrix of the body measured in the inertial frame is given by

IC=AICBAT.{displaystyle mathbf {I} _{mathbf {C} }=mathbf {A} mathbf {I} _{mathbf {C} }^{B}mathbf {A} ^{mathsf {T}}.}

Notice that A{displaystyle mathbf {A} } changes as the body moves, while ICB{displaystyle mathbf {I} _{mathbf {C} }^{B}} remains constant.

Principal axes[edit]

Measured in the body frame the inertia matrix is a constant real symmetric matrix. A real symmetric matrix has the eigendecomposition into the product of a rotation matrix Q{displaystyle mathbf {Q} } and a diagonal matrix Λ{displaystyle {boldsymbol {Lambda }}}, given by

ICB=QΛQT,{displaystyle mathbf {I} _{mathbf {C} }^{B}=mathbf {Q} {boldsymbol {Lambda }}mathbf {Q} ^{mathsf {T}},}

where

Λ=[I1000I2000I3].{displaystyle {boldsymbol {Lambda }}={begin{bmatrix}I_{1}&0&00&I_{2}&00&0&I_{3}end{bmatrix}}.}

The columns of the rotation matrix Q{displaystyle mathbf {Q} } define the directions of the principal axes of the body, and the constants I1{displaystyle I_{1}}, I2{displaystyle I_{2}}, and I3{displaystyle I_{3}} are called the principal moments of inertia. This result was first shown by J. J. Sylvester (1852), and is a form of Sylvester's law of inertia.[26][27] The principal axis with the highest moment of inertia is sometimes called the figure axis or axis of figure.

When all principal moments of inertia are distinct, the principal axes through center of mass are uniquely specified. If two principal moments are the same, the rigid body is called a symmetrical top and there is no unique choice for the two corresponding principal axes. If all three principal moments are the same, the rigid body is called a spherical top (although it need not be spherical) and any axis can be considered a principal axis, meaning that the moment of inertia is the same about any axis.

The principal axes are often aligned with the object's symmetry axes. If a rigid body has an axis of symmetry of order m{displaystyle m}, meaning it is symmetrical under rotations of 360°/m about the given axis, that axis is a principal axis. When m>2{displaystyle m>2}, the rigid body is a symmetrical top. If a rigid body has at least two symmetry axes that are not parallel or perpendicular to each other, it is a spherical top, for example, a cube or any other Platonic solid.

The motion of vehicles is often described in terms of yaw, pitch, and roll which usually correspond approximately to rotations about the three principal axes. If the vehicle has bilateral symmetry then one of the principal axes will correspond exactly to the transverse (pitch) axis.

A practical example of this mathematical phenomenon is the routine automotive task of balancing a tire, which basically means adjusting the distribution of mass of a car wheel such that its principal axis of inertia is aligned with the axle so the wheel does not wobble.

Ellipsoid[edit]

An ellipsoid with the semi-principal diameters labelled a{displaystyle a}, b{displaystyle b}, and c{displaystyle c}.

The moment of inertia matrix in body-frame coordinates is a quadratic form that defines a surface in the body called Poinsot's ellipsoid.[28] Let Λ{displaystyle {boldsymbol {Lambda }}} be the inertia matrix relative to the center of mass aligned with the principal axes, then the surface

xTΛx=1,{displaystyle mathbf {x} ^{mathsf {T}}{boldsymbol {Lambda }}mathbf {x} =1,}

or

I1x2+I2y2+I3z2=1,{displaystyle I_{1}x^{2}+I_{2}y^{2}+I_{3}z^{2}=1,}

defines an ellipsoid in the body frame. Write this equation in the form,

(x1/I1)2+(y1/I2)2+(z1/I3)2=1,{displaystyle left({frac {x}{1/{sqrt {I_{1}}}}}right)^{2}+left({frac {y}{1/{sqrt {I_{2}}}}}right)^{2}+left({frac {z}{1/{sqrt {I_{3}}}}}right)^{2}=1,}

to see that the semi-principal diameters of this ellipsoid are given by

a=1I1,b=1I2,c=1I3.{displaystyle a={frac {1}{sqrt {I_{1}}}},quad b={frac {1}{sqrt {I_{2}}}},quad c={frac {1}{sqrt {I_{3}}}}.}

Let a point x{displaystyle mathbf {x} } on this ellipsoid be defined in terms of its magnitude and direction, x=||x||n{displaystyle mathbf {x} =||mathbf {x} ||mathbf {n} }, where n{displaystyle mathbf {n} } is a unit vector. Then the relationship presented above, between the inertia matrix and the scalar moment of inertia In{displaystyle I_{mathbf {n} }} around an axis in the direction n{displaystyle mathbf {n} }, yields

xTΛx=||x||2nTΛn=||x||2In=1.{displaystyle mathbf {x} ^{mathsf {T}}{boldsymbol {Lambda }}mathbf {x} =||mathbf {x} ||^{2}mathbf {n} ^{mathsf {T}}{boldsymbol {Lambda }}mathbf {n} =||mathbf {x} ||^{2}I_{mathbf {n} }=1.}

Thus, the magnitude of a point x{displaystyle mathbf {x} } in the direction n{displaystyle mathbf {n} } on the inertia ellipsoid is

||x||=1In.{displaystyle ||mathbf {x} ||={frac {1}{sqrt {I_{mathbf {n} }}}}.}

See also[edit]

References[edit]

Area Moment Of Inertia Formula

  1. ^ abMach, Ernst (1919). The Science of Mechanics. pp. 173–187. Retrieved November 21, 2014.
  2. ^Euler, Leonhard (1765). Theoria motus corporum solidorum seu rigidorum: Ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata [The theory of motion of solid or rigid bodies: established from first principles of our knowledge and appropriate for all motions which can occur in such bodies] (in Latin). Rostock and Greifswald (Germany): A. F. Röse. p. 166. ISBN978-1-4297-4281-8. From page 166: 'Definitio 7. 422. Momentum inertiae corporis respectu eujuspiam axis est summa omnium productorum, quae oriuntur, si singula corporis elementa per quadrata distantiarum suarum ab axe multiplicentur.' (Definition 7. 422. A body's moment of inertia with respect to any axis is the sum of all of the products, which arise, if the individual elements of the body are multiplied by the square of their distances from the axis.)
  3. ^ abcdefMarion, JB; Thornton, ST (1995). Classical dynamics of particles & systems (4th ed.). Thomson. ISBN0-03-097302-3.
  4. ^ abSymon, KR (1971). Mechanics (3rd ed.). Addison-Wesley. ISBN0-201-07392-7.
  5. ^ abTenenbaum, RA (2004). Fundamentals of Applied Dynamics. Springer. ISBN0-387-00887-X.
  6. ^ abcdefghKane, T. R.; Levinson, D. A. (1985). Dynamics, Theory and Applications. New York: McGraw-Hill.
  7. ^ abWinn, Will (2010). Introduction to Understandable Physics: Volume I - Mechanics. AuthorHouse. p. 10.10. ISBN1449063330.
  8. ^ abFullerton, Dan (2011). Honors Physics Essentials. Silly Beagle Productions. pp. 142–143. ISBN0983563330.
  9. ^Wolfram, Stephen (2014). 'Spinning Ice Skater'. Wolfram Demonstrations Project. Mathematica, Inc. Retrieved September 30, 2014.
  10. ^Hokin, Samuel (2014). 'Figure Skating Spins'. The Physics of Everyday Stuff. Retrieved September 30, 2014.
  11. ^Breithaupt, Jim (2000). New Understanding Physics for Advanced Level. Nelson Thomas. p. 64. ISBN0748743146.
  12. ^Crowell, Benjamin (2003). Conservation Laws. Light and Matter. p. 107. ISBN0970467028.
  13. ^Tipler, Paul A. (1999). Physics for Scientists and Engineers, Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics. Macmillan. p. 304. ISBN1572594918.
  14. ^ abcdePaul, Burton (June 1979). Kinematics and Dynamics of Planar Machinery. Prentice Hall. ISBN978-0135160626.
  15. ^Halliday, David; Resnick, Robert; Walker, Jearl (2005). Fundamentals of physics (7th ed.). Hoboken, NJ: Wiley. ISBN9780471216438.
  16. ^French, A.P. (1971). Vibrations and waves. Boca Raton, FL: CRC Press. ISBN9780748744473.
  17. ^ abcdefUicker, John J.; Pennock, Gordon R.; Shigley, Joseph E. (2010). Theory of Machines and Mechanisms (4th ed.). Oxford University Press. ISBN978-0195371239.
  18. ^ abcdefghijFerdinand P. Beer; E. Russell Johnston; Jr., Phillip J. Cornwell (2010). Vector mechanics for engineers: Dynamics (9th ed.). Boston: McGraw-Hill. ISBN978-0077295493.
  19. ^H. Williams, Measuring the inertia tensor, presented at the IMA Mathematics 2007 Conference.
  20. ^Gracey, William, The experimental determination of the moments of inertia of airplanes by a simplified compound-pendulum method, NACA Technical Note No. 1629, 1948
  21. ^In that situation this moment of inertia only describes how a torque applied along that axis causes a rotation about that axis. But, torques not aligned along a principal axis will also cause rotations about other axes.
  22. ^Walter D. Pilkey, Analysis and Design of Elastic Beams: Computational Methods, John Wiley, 2002.
  23. ^ abGoldstein, H. (1980). Classical Mechanics (2nd ed.). Addison-Wesley. ISBN0-201-02918-9.
  24. ^L. D. Landau and E. M. Lifshitz, Mechanics, Vol 1. 2nd Ed., Pergamon Press, 1969.
  25. ^L. W. Tsai, Robot Analysis: The mechanics of serial and parallel manipulators, John-Wiley, NY, 1999.
  26. ^Sylvester, J J (1852). 'A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares'(PDF). Philosophical Magazine. 4th Series. 4 (23): 138–142. doi:10.1080/14786445208647087. Retrieved June 27, 2008.
  27. ^Norman, C.W. (1986). Undergraduate algebra. Oxford University Press. pp. 360–361. ISBN0-19-853248-2.
  28. ^Mason, Matthew T. (2001). Mechanics of Robotics Manipulation. MIT Press. ISBN978-0-262-13396-8. Retrieved November 21, 2014.

External links[edit]

Mass Moment Of Inertia Formulas

Wikimedia Commons has media related to Moments of inertia.

Moment Of Inertia Equation Pdf

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Moment_of_inertia&oldid=915612924'